Unveiling the Benefits of Containerized
Applications in Edge Computing

Edge computing is a form of distributed computing' where data processing and storage happen
closer to the sources of data generation, instead of a centralized cloud or data center. This reduces
latency and bandwidth usage compared to cloud computing?.

Comparison of Latency Times (Traditional Cloud vs.
Edge Computing)

Latency (ms)

2500 5000 7500 10000
Data Packet Size (KB)

—a— Traditional Cloud Edge Computing

As edge computing becomes more popular, containerized applications are emerging as an ideal way
to package and deploy software at the edge.

T A computing model in which multiple computers, connected through a network, work together to perform a
common task, or solve a problem.

2In Cloud Computing, a client sends a request to a remote cloud server. The cloud server processes the request
and sends a response back to the client. In Edge Computing, a client sends a request to an edge device (such
as a container) that is located closer to the client. The edge device processes the request and sends a response
back to the client.



What are Containerized Applications?

Containerized applications, or simply containers, are a form of virtualization that packages an
application with its dependencies, libraries, and configuration files into a single unit. Unlike virtual
machines3, containers share the host operating system kernel* and create an isolated version of the
operating system for the application to use. This makes them lightweight, easy to move around, and
fast to start up.>

Benefits of Containerized Applications for Edge
Computing

Containerized applications offer several key advantages that make them suitable for edge computing
environments.

Portability and Consistency

Containers offer a standardized way to package applications, ensuring they can run consistently in
various environments (development, testing, and production). Developers can build and test locally
and then deploy the same containers to edge nodes® without compatibility issues or missing
dependencies. This eliminates the "works on my machine" problem.

Small Footprint and Fast Startup

Containers are smaller and faster than virtual machines. They share the host OS kernel and start up
within seconds, making them ideal for resource-constrained edge devices. This allows applications
to scale out quickly in response to demand spikes.

Isolation and Security

Containers share the host kernel but have their own isolated environment, file system, memory,
processes, and network interfaces. One container can't access another without permission. If a
container is compromised, the damage is limited to that container and won't affect the host or other
containers.’

3 Virtual machines virtualize an entire operating system.

4The kernel is the core component of an operating system. It handles crucial tasks like process management,
memory management, device drivers, and system calls.

5 Some popular container technologies include Docker, Kubernetes, Amazon Elastic, Google Kubernetes
Engine, Microsoft Azure Kubernetes Service, Red Hat OpenShift, Apache Mesos, LXC (Linux Containers), and
CoreOS rkt.

5In the context of computer science and technology, a node is a basic unit or point of connection within a larger
network. For example, in the context of the internet, each device connected to the internet is a node. This
includes computers, smartphones, tablets, and even smart home devices like thermostats or security
cameras.

7 Additional security measures such as SELinux and AppArmor can provide enhanced hardening for containers.



Orchestration and Automation

Container orchestration platforms like Kubernetes® make it easy to automate the deployment,
scaling, and management of containerized applications across a cluster of edge nodes. Developers
can define the desired state of the application using declarative configuration files, and the
orchestrator ensures the actual state matches the desired state. This enables a GitOps-style
workflow where the desired state is version-controlled and automatically synced to the runtime
environment.

Modularity and Microservices

Containers encourage a modular application architecture in which the application is separated into
loosely coupled microservices. Each microservice operates within its own container and interacts
with other microservices via well-defined APIs. This modular approach simplifies the development,
testing, and updating of individual services independently. It also improves scalability and fault
tolerance since each microservice can be scaled and restarted separately.

Here's an example of a microservices architecture deployed using Docker containers:®

Authentication Service f———»- Redis

/ Order Service ———(_ MongoDB

Client ——{ API Gateway —— Catalog Service }—» PostgreSQL

Payment Service ———_ Stripe APl

Shipping Service ————(_ FedEx API

8 Kubernetes is a super-smart system that helps manage containers efficiently.
%1In this architecture, each microservice is deployed as a separate Docker container:
o AP| Gateway: Acts as the entry point for client requests and routes them to the appropriate
microservice.
e Authentication Service: Handles user authentication and authorization.
e Order Service: Manages user orders and order history.
e (Catalog Service: Provides information about products, prices, and availability.
e Payment Service: Handles payment processing for orders.
e Shipping Service: Manages shipping of orders



Resource Efficiency and Density

Containers use less space and can be runin clusters on one edge node. This saves money and helps
to improve performance by reducing network latency. It's also possible to run multiple services on
one node, which improves resource utilization and further reduces costs.

Ecosystem and Tooling

Containers are popular because of the many tools and services available. Docker Hub has pre-built
images for software components. Docker Compose simplifies multi-container apps. Kubernetes
automates deployment and scaling. These tools help developers work faster.

Conclusion

Containerized applications are a perfect match for edge computing because they’re portable,
efficient, and modular. They provide a reliable and automated way to package and deploy
applications across different edge environments.

As edge computing advances, containers will play an increasingly important role in enabling new
use cases and unlocking the full potential of the intelligent edge.



